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Abstract. We study Bergman-harmonic functions on classical domains from a new point of view in

this paper. We first establish a boundary pluriharmonicity result for Bergman-harmonic functions on

classical domains: A Bergman-harmonic function u on a classical domain D must be pluriharmonic

on germs of complex manifolds in the boundary of D if u has some appropriate boundary regularity.

Next we give a new charaterization of pluriharmonicity on classical domains which may shed a new

light on future study of Bergman-harmonic functions. We also prove characterization results for

Bergman-harmonic functions on type I domains.
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1. Introduction

Let Ω be a bounded domain in Cn equipped with the Bergman metric g = (gij)1≤i,j≤n. The

Laplace-Beltrami operator with respect to the Bergman metric on Ω is defined as

∆g = 4
∑

1≤i,j≤n
gij

∂2

∂zi∂zj
.

Here (gij) is the inverse matrix of (gij)
t. For instance when Ω is the unit ball Bn, ∆g is given by the

following formula up to a constant multiplication (cf. [H]):

(1− ||z||2)
n∑

α,β=1

(δαβ − zαzβ)
∂2

∂zα∂zβ
.

We will follow the convention of Graham [G1-2] and say a function u ∈ C2(Ω) is harmonic with respect

to the Bergman metric, or simply Bergman-harmonic in Ω if ∆gu = 0. An important property of the

space of Bergman-harmonic functions is its invariance under compositions by automorphisms (i.e.,

biholomorphic self-mappings) of Ω. Indeed, the Laplace-Beltrami operator ∆g satisfies the following

invariant condition for every u ∈ C2(Ω) and automorphism ψ of Ω:

∆g(u ◦ ψ) = (∆gu) ◦ ψ. (1.1)

In general the space of Bergman-harmonic functions properly contains the space of pluriharmonic

functions.

A fundamental question on this subject asks what can be the boundary value of Bergman-harmonic

functions on a bounded pseudconvex domain Ω and what boundary regularity can be expected. The
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problem is subtle since the operator ∆g is not uniformly elliptic in general and lots of techniques from

PDE cannot be applied. It is better-understood in the unit ball case and is widely open in general.

When Ω = Bn, for any φ ∈ C(∂Bn), the following Poisson integral gives the unique Bergman-harmonic

function in Bn with boundary value φ:

u(z) =

∫
∂Bn

(1− ||z||2)n

|1− 〈z, w〉|2n
φ(w)dσ(w).

In his seminal work [G1-2], Graham proved that when φ ∈ C∞(∂Bn), the function u given by the

above integral satisfies an asymptotic expansion in Bn:

u(z) = G(z) +H(z)(1− ||z||2)n log(1− ||z||2).

Here G,H ∈ C∞(Bn). In general, when n ≥ 2, H 6≡ 0 on ∂Bn and consequently u(z) does not have

Cn−smooth extension to the boundary. Moreover, corresponding to the case H ≡ 0 on ∂Bn, Graham

[G1] established the following striking result.

Theorem 1. (Graham [G1]) If u ∈ Cn(Bn) is Bergman-harmonic (∆gu = 0) in Bn, then u is

pluriharmonic in Bn.

Here and in the remaining of the paper, we say u ∈ Cm(K) for a closed set K if u is Cm in

some open set containing K. Since the work of Graham, many authors contributed to understanding

the pluriharmonicity of harmonic functions with respect to various interesting metrics and related

topics. Here we mention the results of Graham [G1-2], Graham-Lee [GL], Ahern-Bruna-Cascante

[ABC], Li-Simon [LS], Li-Wei [LW], Li-Ni [LN] and references therein.

In the remaining part of the paper, we will concentrate on the case when Ω is a classical domain.

The study of Bergman-harmonic functions on classical domains dates back to the work of Hua [H]

and Lu [Lu]. Let D be a classical domain and write S(D) for the Shilov boundary of D. Hua [H]

proved that, for φ ∈ C(S(D)), the following Poisson integral gives a Bergman-harmonic function on

D:

u(z) =

∫
S(D)

P (z, w)φ(w)dσ(w).

Here P (z, w) is the Poisson-Szegö kernel (cf [H], [Lu] for more details). Conversely, any function

u ∈ C2(D) ∩ C(D) that is Bergman-harmonic in D has a Possion integral representation as above

with φ its value restricted on the Shilov boundary. This Poisson integral formula is a major tool in

the study of Bergman-harmonic functions on classical domains.

A remarkable step toward understanding Bergman-harmonic functions on classical domains was

made by a recent work of Chen-Li [CL]. They established Graham type results for most cases of

classical domains. To illustrate, we in particular recall their result for type I domains DI
p,q (See

Section 2 for definition of the latter).

Theorem 2. (Chen-Li, [CL]) Let 1 ≤ p ≤ q and q ≥ 2. If u ∈ Cq(DI
p,q) is Bergman-harmonic in

DI
p,q, then u is pluriharmonic.
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In the first part (Section 3) of this paper, we explore further along this research line and in par-

ticular study the boundary pluriharmonicity of Bergman-harmonic functions on classical domains.

To explain our result, we first recall the notion of bounded symmetric domains and their boundary

structure. A complex manifold X with a Hermitian metric h is said to be a Hermitian symmetric

space if, for every point z ∈ X, there exists an involutive holomorphic isometry σz of X such that z

is an isolated fixed point. An irreducible Hermitian symmetric space of noncompact type can be, by

the Harish-Chandra embedding (See [Wo]), realized as a bounded domain in some complex Euclidean

space. Such domains are convex, circular and sometimes called bounded symmetric domains. Irre-

ducible bounded symmetric domains can be classified into Cartan’s four types of classical domains

and two exceptional domains (See [M]).

The rank r of a bounded symmetric domain D, can be defined as the dimension of the maximal

polydisc that can be totally geodesically embedded into D. We next recall the boundary fine structure

of an irreducible bounded symmetric domain D ([Wo]). By Borel embedding (See [M], [Wo]), D can

be canonically embedded into its dual Hermitian symmetric manifold X of the compact type. Under

the embedding, every automorphism g ∈ Aut(D) extends to an automorphism of X and D becomes

an open orbit under the action of Aut(D) on X. Moreover, denoting the rank of D by r, the

topological boundary ∂D of D decomposes into exactly r orbits under the action of the identity

component G of Aut(D) : ∂D = ∪ri=1Ei, where Ek lies in the closure of El if k > l. Moreover, Ek

is the smooth part of the semi-analytic variety ∪rj=kEj (See the proof of Lemma 2.2.3 in [MN]). In

particular E1 is the unique open orbit in ∂D, which is indeed the smooth part of ∂D, and Er is

the Shilov boundary. Sometimes we also write E0 := D so that D = ∪ri=0Ei. Note the boundary

∂D of a bounded symmetric domain D is non-smooth and contains complex varieties, unless D is

biholomorphic to the unit ball.

We next introduce our results and start with the type I domain case.

Theorem 3. Let 1 ≤ p ≤ q. Fix 0 ≤ k ≤ p − 1 and set l = max{2, q − k}. If u ∈ C l(DI
p,q) is

Bergman-harmonic in DI
p,q, then u is pluriharmonic on every germ of complex manifold in Ek.

Remark 1.1. • When p = 1, Theorem 3 is reduced to Graham’s theorem (Theorem 1) and

when k = 0, it is reduced to Chen-Li’s Theorem (Theorem 2).

• Theorem 3 is not meaningful if k = p as the Shilov boundary Ep contains only trivial complex

varieties.

In particular Theorem 3 implies the following result when k = 1.

Corollary 1.1. Let 1 ≤ p ≤ q and q ≥ 3. If u ∈ Cq−1(DI
p,q) is Bergman-harmonic in DI

p,q, then u is

pluriharmonic on every germ of complex manifold in the boundary of DI
p,q.

We also establish analogous results for other types of classical domains with different boundary

regularity assumptions. We leave the detailed statements for other types of domains to Section 3.

We only mentione here the following particular result.
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Theorem 4. Let D be a classical domain of type II, III or IV in CN with r = rank(D) ≥ 2. Assume

m is even if D is of type II. Let V be an open set in CN containing D − Er, where Er is the Shilov

boundary of D. Assume u ∈ C2(V ) is Bergman-harmonic in D. Then u is harmonic on every germ

of complex curve in Er−1. In the type IV case, this means u is harmonic on every germ of complex

curve in the boundary ∂D.

Remark 1.2. Since we do not assume u ∈ C(D), we cannot use the Poisson integral formula for

Bergman-harmonic functions in the proof.

In the second part of the paper (Section 4), we establish a new characterization result for pluri-

harmonicity by using the geometric structure of variety of minimal rational tangents of bounded

symmetric domains (See Section 4 for the definition).

Theorem 5. A C2−smooth function h on an irreducible bounded symmetric domain D is plurihar-

monic if and only if h is harmonic on every minimal disk of D.

We expect this result to be useful in the future study of Bergman-harmonic functions on bounded

symmetric domains. We also include some other possible applications in Section 4.

Finally, using ideas introduced in Section 3, we provide a characterization of Bergman-harmonic

functions on type I domains in Section 5.

Acknowledgement: The author thanks Sui-Chung Ng for helpful discussions on varieties of

minimal rational tangents.

2. Classical domains and the Hua operators

This section includes some preliminaries on classical domain. Recall that classical domains are

classified into Cartan’s four types of domains, which are defined as follows respectively. Note in this

paper we follow the convention in [M], [Wo] and [PS] by which the type II domains correspond to the

space of skew-symmetric matrices, while the type III domains correspond to the space of symmetric

matrices. These two notions are, however, switched in some other literature, such as [Lu] and [CL].

• Assume p ≤ q and write Cp×q for the space of p×q matrices with entries of complex numbers.

Denote by Ip the p×p identity matrix. We write a p×p matrix A > 0 if A is strictly positive

definite. The classical domain of type I is defined by:

DI
p,q = {Z ∈ Cp×q : Ip − ZZ

t
> 0}.

The boundary of DI
p,q is given by

∂DI
p,q = {Z ∈ Cp×q : Ip − ZZ

t ≥ 0; det(Ip − ZZ
t
) = 0}.

Note DI
p,q is of rank p and the boundary ∂DI

p,q decomposes into p orbits under the action of

the identity component G0 of Aut(DI
p,q) : ∂DI

p,q = ∪pi=1Ei. Here Ek lies in the closure of El

when k > l;E1 is the smooth part of ∂DI
p,q, and Ep is the Shilov boundary. More explicitly

in this type I case,

Ek = {Z ∈ ∂DI
p,q : the corank of Ip − ZZ

t
equals k}, 1 ≤ k ≤ p.
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• Denote by C
m(m−1)

2
II = {Z ∈ Cm×m : Z = −Zt} the set of all skew-symmetric square matrices

of size m×m. Recall the classical domain of type II is defined by

DII
m = {Z ∈ C

m(m−1)
2

II : Im − ZZ
t
> 0}.

The boundary of DIII
m is given by

∂DII
m = {Z ∈ C

m(m−1)
2

II : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0}.

Note the rank of DII
m equals r = b12mc. Here b·c denotes the floor function, i.e., 2r = m if

m is even and 2r + 1 = m if m is odd. The boundary ∂DII
m decomposes into r orbits under

the action of the identity component G0 of Aut(DII
m ) : ∂DII

m = ∪ri=1Ei. Here Ek lies in the

closure of El if k > l. More explicitly in this type II case (See [Wo], [X] for more details),

Ek = {Z ∈ ∂DII
m : the corank of Im − ZZ

t
equals 2k}, 1 ≤ k ≤ r.

• Denote by C
m(m+1)

2
III = {Z ∈ Cm×m : Z = Zt} the set of all symmetric square matrices of size

m×m. Recall the classical domain of type III is defined by

DIII
m = {Z ∈ C

m(m+1)
2

III : Im − ZZ
t
> 0}.

The boundary of DIII
m is given by

∂DIII
m = {Z ∈ C

m(m+1)
2

III : Im − ZZ
t ≥ 0; det(Im − ZZ

t
) = 0}.

Note DIII
m is of rank m and the boundary ∂DIII

m decomposes into m orbits under the action

of the identity component G0 of Aut(DIII
m ) : ∂DIII

m = ∪mi=1Ei. Here Ek lies in the closure of

El when k > l. More explicitly in this type III case,

Ek = {Z ∈ ∂DIII
m : the corank of Im − ZZ

t
equals k}, 1 ≤ k ≤ m.

• Recall the type IV classical domain DIV
m (m ≥ 2), often called the Lie ball, is defined by

DIV
m = {Z = (z1, · · · , zm) ∈ Cm : ZZ

t
< 1, 1− 2ZZ

t
+ |ZZt|2 > 0}.

When m = 2, DIV
2 is biholomorphic to the bidisc. The boundary of DIV

m is given by

∂DIV
m = {Z = (z1, · · · , zm) ∈ Cm : ZZ

t ≤ 1, 1− 2ZZ
t
+ |ZZt|2 = 0}.

Since the type IV domain DIV
m is always of rank two, its boundary is stratified into two orbits:

∂DIV
m = E1 ∪ E2, where E1 is the smooth boundary and E2 is the Shilov boundary of DIV

m .

Here

E1 = {Z = (z1, · · · , zm) ∈ Cm : ZZ
t
< 1, 1− 2ZZ

t
+ |ZZt|2 = 0};

E2 = {Z ∈ Cm : ZZ
t

= 1, 1− 2ZZ
t
+ |ZZt|2 = 0} = {Z ∈ Cm : ||Z||2 = |ZZt| = 1}. (2.1)
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Write ∆1,∆2,∆3 and ∆4 for the Hua operators associated to the four types of classical domains,

respectively (See [H], [Lu]). Recall they equal to the Laplace-Beltrami operator with respect to the

Bergman metrics (up to a constant multiplication). We include here the explicit expressions for the

Hua operators which can be found in [H], [Lu].

• Type I case: Let Z = (zij)1≤i≤p,1≤j≤q ∈ Cp×q. Write

V (Z) = Ip − ZZ
t
; Vjk = [V (Z)]jk = δjk −

q∑
l=1

zjlzkl, 1 ≤ j, k ≤ p. (2.2)

Then the Hua operator is given by

∆1 =

p∑
j,k=1

Vjk∆
jk
1 , ∆jk

1 :=

q∑
α,β=1

(
δαβ −

p∑
l=1

zlαzlβ

)
∂2

∂zjα∂zkβ
; (2.3)

• Type II case: Let Z = (zij)1≤i,j≤m ∈ C
m(m−1)

2
II and Vjk be as in (2.2). Then the Hua operator

is given by

∆2 =
1

4

m∑
j,k=1

Vjk∆
jk
2 ; ∆jk

2 :=
m∑

j,k=1

Vαβ(1− δjα)(1− δkβ)
∂2

∂zjα∂zkβ
. (2.4)

• Type III case: Let Z = (zij)1≤i,j≤m ∈ C
m(m+1)

2
III and Vjk be as in (2.2). Then the Hua operator

is given by

∆3 =
1

4

m∑
j,k=1

Vjk∆
jk
2 , ∆jk

3 :=

m∑
α,β=1

Vαβ
(1− δjα/2)(1− δkβ/2)

∂2

∂zjα∂zkβ
. (2.5)

• Type IV case: Let Z = (z1, · · · , zn) ∈ Cn. Write

s(Z) =
n∑
j=1

z2j , r(Z) = 1− 2 ‖Z‖2 + |s(Z)|2 (2.6)

Then the Hua operator is given by

∆4 =
n∑

j,k=1

[
r(Z)(δjk − 2zjzk) + 2(zj − s(Z)zj)(zk − s(Z)zk)

] ∂2

∂zj∂zk
. (2.7)

3. Boundary Pluriharmonicity

In this section, we establish boundary pluriharmonicity results for each type of classical domains.

The proof relies on the biholomorphic invariance of Bergman-harmonic functions and fundamentally

uses the structure of analytic sets in the boundary of a classical domain. We start with the notion

of boundary components of a domain Ω in Cn(cf. [PS]).

Definition 3.1. Let Ω ⊂ Cn be a domain, and ∂Ω its topological boundary. An analytic set X ⊂ ∂Ω

is called a boundary component of Ω if any analytic curve that is entirely contained in ∂Ω and

intersects X must lie entirely in X.
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We say a boundary component X is regular if it is smooth as an analytic set. We recall the

following result for classical domains from [PS].

Proposition 3.1. (Theorem 5, page 85, [PS]) Let D be a classical domain in CN . Then the following

hold:

(1) Every point in ∂D is contained in some boundary component.

(2) Every boundary component of D is regular and furthermore biholomorphically equivalent to

some classical domain in a complex space of lower dimension.

We remark that there are only trivial analytic varieties in the Shilov boundary of D, and in the

above theorem, each point in the Shilov boundary is counted as a boundary component. We will call

them trivial boundary components.

We introduce the following defintion to study the boundary behavior of Bergman-harmonic func-

tions on classical domains.

Definition 3.2. Let D be a classical domain in CN and D′ ⊂ CN ′ a classical domain of lower

dimension than D.

(1) We say h : D′ → ∂D gives a boundary component of D if the image h(D′) is some boundary

component of D and h is a biholomorphism from D′ to h(D′).

(2) Let u ∈ C2(U) for some open subset U of CN containing h(D′). We say u is Bergman-

harmonic on the boundary component h(D′) if the composition u ◦ h is Bergman-harmonic

in D′.

Remark 3.1. We make a couple of important remarks on this definition.

• Part (1) makes sense due to Proposition 3.1.

• The notion in part (2) is independent of the choice of h and D′. Indeed, suppose ĥ : D̂ → ∂D

gives the same boundary component, i.e., ĥ(D̂) = h(D′). Then we must have ĥ = h ◦ φ for

some biholomorphism φ from D̂ to D′. It then follows from the biholomorphic invariance of

Bergman-harmonic functions that u ◦ ĥ is Bergman-harmonic in D̂ if and only if u ◦ h is so

in D′.

The following result plays a key role in establishing the boundary pluriharmonicity.

Theorem 6. Let D ⊂ CN be a classical domain and V an open subset of CN containing the set

D−Er, where Er is the Shilov boundary of D. Assume u ∈ C2(V ) is Bergman-harmonic in D. Then

u is Bergman-harmonic on every boundary component of D. That is, for every h : D′ → D which

gives a boundary component of D, it holds that u ◦ h is Bergman-harmonic in D′.

Remark 3.2. (1) Here we do not assume C2−smoothness of u across the Shilov boundary Er

since there are only trivial boundary components contained in Er.

(2) If we assume additionally that u ∈ C(D), then one can use the Poisson integral formula for

Bergman-harmonic functions and apply results in [Lu] to prove Theorem 6. Our proof will,

however, avoid the Poisson integral formula as we do not assume the continuity of u on D.
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Due to the distinct boundary structures of different types of classical domains, we will prove

Theorem 6 case by case for the four types of classical domains in subsections 3.1-3.4.

3.1. Boundary pluriharmonicity on type I domains. In this subsection, we prove Theorem 6

for type I case and establish Theorem 3. Assume D = DI
p,q for some 1 ≤ p ≤ q. Recall the following

facts from [PS]. Denote by Ik the k × k identity matrix.

Lemma 3.1. (Theorem 1, page 93, [PS])

(1) Let 1 ≤ k ≤ p and Xk be the set of points in ∂DI
p,q of form:(

Ik 0

0 W

)
, where W ∈ DI

p−k,q−k. (3.1)

Then Xk is a boundary component of DI
p,q. Clearly Xk ' DI

p−k,q−k.

(2) Every boundary component X of DI
p,q can be transformed to Xk for some 1 ≤ k ≤ p by some

automorphism of DI
p,q.

We will call such boundary component X in (2) a boundary k−component. Note a boundary

k−component lies entirely in Ek ⊂ ∂DI
p,q. We call the boundary component given by h1 : DI

p−1,q−1 →
∂DI

p,q a standard 1−component where

h1(W ) =

(
1 0

0 W

)
∈ X1, W ∈ DI

p−1,q−1. (3.2)

Note if u extends C2−smoothly across the smooth part E1 of ∂DI
p,q, then u◦h1 is C2 on DI

p−1,q−1.

We first show

Lemma 3.2. Let V an open subset in Cp×q containing DI
p,q and E1, where E1 is the smooth boundary

of DI
p,q. Assume u ∈ C2(V ) is Bergman-harmonic in DI

p,q. Then u ◦ h1 is Bergman-harmonic on

DI
p−1,q−1.

Proof. Write W = (wst)1≤s≤p−1,1≤t≤q−1 for the coordinates in DI
p−1,q−1 ⊂ C(p−1)×(q−1). Recall by

equation (2.3) the Hua operator on DI
p−1,q−1 is given by

∆̃1 =

p−1∑
s,t=1

Ṽst∆̃
st
1 . (3.3)

Here Ṽst = Ṽst(W ) = δst −
∑q−1

r=1wsrwtr; ∆̃st
1 =

∑q−1
a,b=1(δab −

∑p−1
r=1 wrawrb)

∂2

∂wsa∂wtb
.

We need to show ∆̃1(u ◦ h1) = 0 on DI
p−1,q−1. For that we first note by assumption that ∆1u = 0

where ∆1 is given by (2.3). Since u ∈ C2(V ), and the coefficients in the differential operater ∆1 is

smooth in Cp×q, we conclude ∆1u = 0 in V. Next we fix W0 ∈ DI
p−1,q−1 and Z0 =

(
1 0

0 W0

)
∈
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X1 ⊂ E1 ⊂ V. We evaluate ∆1u at Z = (zij)1≤i≤p,1≤j≤q = Z0. It must equal zero by the preceding

argument. On the other hand, using (2.2)-(2.3), we have

V11
∣∣
Z0

= 1− (

q∑
l=1

z1lz1l)
∣∣
Z0

= 0.

V1k
∣∣
Z0

= −(

q∑
l=1

z1lzkl)
∣∣
Z0

= 0 if k > 1; Vj1
∣∣
Z0

= −(

q∑
l=1

zjlz1l)
∣∣
Z0

= 0 if j > 1.

(3.4)

When j, k > 1,

Vjk
∣∣
Z0

= δjk − (

q∑
l=1

zjlzkl)
∣∣
Z0

= δ(j−1)(k−1) − (

q∑
l=2

zjlzkl)
∣∣
Z0

= δ(j−1)(k−1) −

(
q−1∑
r=1

w(j−1)rwr(k−1)

)∣∣
W0

= Ṽ(j−1)(k−1)
∣∣
W0
.

(3.5)

Next we note

∆jk
1 u
∣∣
Z0

=

q∑
α,β=1

(δαβ −
p∑
l=1

zlαzlβ)
∂2u

∂zjαzkβ

∣∣
Z0
, (3.6)

and compute the term in the parenthesis in (3.6):

• When α = 1, β = 1, δ11 − (
∑p

l=1 zl1zl1)
∣∣
Z0

= 0;

• When α = 1, β > 1, δ1β − (
∑p

l=1 zl1zlβ)
∣∣
Z0

= 0;

• When α > 1, β = 1, δα1 − (
∑p

l=1 zlαzl1)
∣∣
Z0

= 0;

• When α > 1, β > 1, we have

δαβ− (
∑p

l=1 zlαzlβ)
∣∣
Z0

= δαβ− (
∑p

l=2 zlαzlβ)
∣∣
Z0

= δ(α−1)(β−1)− (
∑p−1

r=1 wr(α−1)wr(β−1))
∣∣
W0
.

Moreover, we have by chain rule,

∂2u

∂zjα∂zkβ

∣∣
Z0

=
∂2(u ◦ h1)

∂w(j−1)(α−1)∂w(k−1)(β−1)

∣∣
W0

if j > 1, k > 1, α > 1, β > 1.

Substituting these into (3.6), we obtain when j > 1, k > 1,

∆jk
1 u
∣∣
Z0

=

q∑
α,β=2

(δαβ −
p∑
l=1

zlαzlβ)
∂2u

∂zjα∂zkβ

∣∣
Z0

=

q−1∑
a,b=1

(δab −
p−1∑
r=1

wrawrb)
∂2(u ◦ h1)

∂w(j−1)a∂w(k−1)b

∣∣
W0

= ∆̃
(j−1)(k−1)
1 (u ◦ h1)

∣∣
W0
.

(3.7)

Consequently, by (3.4), (3.5) and (3.7),

∆1u
∣∣
Z0

=

p∑
j,k=2

Vjk∆
jk
1 u
∣∣
Z0

=

p−1∑
s,t=1

Ṽst∆̃
st
1 (u ◦ h1)

∣∣
W0

= 0.
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This implies ∆̃1(u ◦ h1) = 0 at W = W0 by (3.3) Since W0 is arbitrary in DI
p−1,q−1, we conclude

u ◦ h1 is Bergman-harmonic in DI
p−1,q−1.

Proof of Theorem 6 for the type I case: Let D = DI
p,q with 1 ≤ p ≤ q and V be as in Theorem

6. Let u ∈ C2(V ) be Bergman-harmonic in DI
p,q. By Lemma 3.2, u ◦ h1 is Bergman-harmonic on

DI
p−1,q−1, where h1 gives the standard 1−component as in (3.2). Let h : DI

p−1,q−1 → ∂DI
p,q be

another boundary 1−component. By Proposition 3.1, h = ψ ◦h1 ◦φ for some φ ∈ Aut(DI
p−1,q−1) and

ψ ∈ Aut(DI
p,q). Since ψ extends holomorphically to a neighborhood of DI

p,q, there exists an open set

V̂ in Cp×q containing DI
p,q and E1 such that u ◦ψ ∈ C2(V̂ ). Moreover, u ◦ψ is Bergman-harmonic in

DI
p,q by the biholomorphic invariance of Bergman-harmonic functions. We conclude by Lemma 3.2

that u ◦ψ ◦ h1 is Bergman-harmonic and consequently u ◦ h = u ◦ψ ◦ h1 ◦ φ is Bergman-harmonic in

DI
p−1,q−1. We have thus proved u is Bergman-harmonic on every boundary 1−component of DI

p,q.

For 2 ≤ k ≤ p− 1, we note every boundary k−component Yk of DI
p,q is a boundary 1−component

of some boundary (k − 1)−component Yk−1 of DI
p,q. Moreover, the smooth boundary of Yk−1 lies in

Ek ⊂ ∂DI
p,q. Thus it follows from the boundary regularity assumption and an inductive application

of Lemma 3.2 that u is Bergman-harmonic on every boundary component of DI
p,q. One can prove the

general case by direct computation as well by using the explicit expression (3.1) and biholomorphic

invariance of Bergman-harmonic functions.

�

We next prove the boundary pluriharmonicity of Bergman-harmonic functions on type I domains,

i.e., Theorem 3. We first make the following remark.

Remark 3.3. Let hk : DI
p−k,q−k ⊂ C(p−k)×(q−k) → DI

p,q be as in (3.1) that gives the standard

k−component. Then clearly hk extends to be a polynomial map in C(p−k)×(q−k). More generally,

assume h : DI
p−k,q−k ⊂ C(p−k)×(q−k) → DI

p,q gives any boundary k−component. By Proposition 3.1,

h = ψ ◦hk ◦φ for some φ ∈ Aut(DI
p−k,q−k) and ψ ∈ Aut(DI

p,q). Since φ and ψ extend holomorphically

to a neighborhood of DI
p−k,q−k and DI

p,q, respectively. As a consequence, h extends holomorphically

to a neighborhood of DI
p−k,q−k.

Proof of Theorem 3: Fix 1 ≤ k ≤ p− 1. To prove Theorem 3, we first note every analytic curve

in Ek is contained in some boundary component of DI
p,q in Ek and, in light of Proposition 3.1, these

boundary components are precisely boundary k−components of DI
p,q. It thus suffices to show u is

pluriharmonic in every boundary k−component. Assume h : DI
p−k,q−k → ∂DI

p,q gives a boundary

k−component of DI
p,q. Theorem 6 implies u ◦ h is Bergman-harmonic in DI

p−k,q−k. Moreover, by

assumption, u ∈ C l(DI
p,q), with l = max{2, q − k}. If q − k < 2, then p = q = k + 1 and DI

p−k,q−k is

the unit disk ∆ and the conclusion follows easily. Now assume q−k ≥ 2. Consequently, u◦h extends

(q − k)−smoothly across the boundary of DI
p−k,q−k by Remark 3.3. We finally apply Theorem 1.2

(i) in [CL] to conclude u ◦ h is pluriharmonic in DI
p−k,q−k. This establishes Theorem 3.
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3.2. Boundary pluriharmonicity on type II domains. In this subsection, we prove Theorem

6 for type II domains and establish boundary pluriharmonicity for Bergman-harmonic functions on

type II domains D = DII
m for m ≥ 2. Recall the following result from [PS].

Lemma 3.3. (Theorem 1, page 115, [PS])

(1) Let the integer 1 ≤ k ≤ m
2 and Xk be the set of points ∂DII

m of the form:
J

J

· · ·
J

W


where there are k copies of J :=

(
0 1

−1 0

)
,W ∈ DII

m−2k, and all other omitted elements

are zero. Then Xk is a boundary component of DII
m .

(2) Any boundary component X of DII
m can be transformed to Xk for some integer 1 ≤ k ≤ m

2 by

some automorphism of DII
m .

We will call such X in (2) a boundary k−component of DII
m . Note every boundary k−component

lies in Ek. In particular, we say h1 : DII
m−2 → ∂DII

m gives the standard boundary 1−component,

where

h1(W ) =

(
J

W

)
, W ∈ DII

m−2 ⊂ C
(m−2)(m−3)

2
II .

As before, note u ◦ h1 ∈ C2(DII
m−2) if u extends C2−smoothly across the smooth boundary E1 of

DII
m , and prove

Lemma 3.4. Let V be an open set in C
m(m−1)

2
II containing DII

m and E1. Assume u ∈ C2(V ) is

Bergman-harmonic in DII
m . Then u ◦ h1 is Bergman-harmonic in DII

m−2.

Proof. Write W = (wij)1≤i,j≤m−2 with wij = −wji for the coordinates in C
(m−2)(m−3)

2
II . Recall by

equation (2.4), the Hua operator on DII
m−2 is given by

∆̃2 =
1

4

m−2∑
s,t=1

Ṽst∆̃
st
2 , (3.8)

where Ṽst = δst −
∑m−2

r=1 wsrwtl; ∆̃st
2 =

∑m−2
a,b=1 Ṽab(1− δsa)(1− δtb)

∂2

∂wsa∂wtb
.

We will prove ∆̃2(u ◦ h1) = 0 on DII
m−2. Let ∆2 be the Hua operator on the type II domain DII

m

as in (2.4). As in the proof of Lemma 3.2, we have ∆2u = 0 on E1 by the Bergman-harmonicity and

boundary regularity of u. Consequently, if we fix W0 ∈ DII
m−2, and Z0 =

(
J 0

0 W0

)
∈ X1 ⊂ E1,

then ∆2u = 0 at Z = Z0. We next compute ∆2u at Z = Z0 by using (2.4).
11



Claim: Vjk|Z0 = 0 if j ≤ 2 or k ≤ 2. If j > 2 and k > 2, then Vjk
∣∣
Z0

= Ṽ(j−2)(k−2)
∣∣
W0
.

Proof of Claim: If j = k ≤ 2, we have

V11
∣∣
Z0

= 1− (

m∑
l=1

z1lz1l)
∣∣
Z0

= 0; V22
∣∣
Z0

= 1− (

m∑
l=1

z2lz2l)
∣∣
Z0

= 0.

If j 6= k and one of them is at most 2, we have

Vjk
∣∣
Z0

= −(
m∑
l=1

zjlzkl)
∣∣
Z0

= 0.

If j > 2 and k > 2, then

Vjk
∣∣
Z0

= δjk −
m∑
l=1

(zjlzkl)
∣∣
Z0

= δjk −
m∑
l=3

(zjlzkl)
∣∣
Z0

= δ(j−2)(k−2) −
m∑
l=3

(w(j−2)(l−2)w(k−2)(l−2))
∣∣
W0

= Ṽ(j−2)(k−2)
∣∣
W0
.

(3.9)

This proves the claim.

Note also by the chain rule, if j > 2, k > 2, α > 2, β > 2,

∂2u

∂zjα∂zkβ

∣∣
Z0

=
∂2(u ◦ h1)

∂w(j−2)(α−2)∂w(k−2)(β−2)

∣∣
W0
.

Consequently, if j > 2 and k > 2,

∆jk
2 u
∣∣
Z0

=
m∑

α,β=1

Vαβ(1− δjα)(1− δkβ)
∂2u

∂zjα∂zkβ

∣∣
Z0

=
m∑

α,β=3

Vαβ(1− δjα)(1− δkβ)
∂2u

∂zjα∂zkβ

∣∣
Z0

=
m∑

α,β=3

Ṽ(α−2)(β−2)(1− δ(j−2)(α−2))(1− δ(k−2)(β−2))
∂2(u ◦ h1)

∂w(j−2)(α−2)∂w(k−2)(β−2)

∣∣
W0

= ∆̃
(j−2)(k−2)
2 (u ◦ h1)

∣∣
W0
.

(3.10)

Hence

∆2u
∣∣
Z0

=
1

4

m∑
j,k=1

Vjk
∣∣
Z0

(∆jk
2 )
∣∣
Z0

=
1

4

m∑
j,k=3

Vjk
∣∣
Z0

(∆jk
2 )
∣∣
Z0

=
1

4

m−2∑
s,t=1

Ṽst
∣∣
W0

∆̃st
2 (u ◦ h1)

∣∣
W0

= 0

(3.11)

This implies ∆̃2(u ◦ h1)
∣∣
W0

= 0 by (3.8). Since W0 is arbitrary in DII
m−2, we have u ◦ h1 is

Bergman-harmonic in DII
m−2. �
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Proof of Theorem 6 for the type II case: Theorem 6 in this case can be proved by the same

argument as in the type I case and by using Lemma 3.4.

As a consequence of Theorem 6 in this case, we have the following boundary pluriharmonicity for

Bergman-harmonic functions on type II domains.

Proposition 3.2. If m ≥ 6 is even and u ∈ Cm−3(DII
m ) is Bergman-harmonic in DII

m , then u is

pluriharmonic on every germ of complex manifold in ∂DII
m .

Proof. It suffices to prove that u is pluriharmonic on every boundary component of DII
m . Let r =

rank(DII
m ). Fix 1 ≤ k ≤ r−1. Assume h : DII

m−2k → ∂DII
m gives a boundary k−component. Theorem

6 yields u◦h is Bergman-harmonic on DII
m−2k. By assumption, u ∈ Cm−3(DII

m ). Consequently, since h

extends holomorphically across the boundary of DII
m−2k (This can be seen similarly as in Remark 3.3),

we have u ◦h1 extends (m− 3)−smoothly to a neighborhood of DII
m−2k. We then apply Theorem 1.2

(iv) in [CL] to conclude u◦h is pluriharmonic in DII
m−2k. Since k is arbitrarily chosen, we have proved

that u is pluriharmonic on every boundary component, and Proposition 3.2 follows readily. �

Write r = rank(DII
m ). Note every germ of nontrivial complex variety in Er−1 ⊂ ∂DII

m must be

one-dimensional.

Proposition 3.3. Let m ≥ 4 be even and write r = rank(DII
m ). Let V be an open set in C

m(m−1)
2

II

containing DII
m − Er. Assume u ∈ C2(V ) is Bergman-harmonic in DII

m . Then u must be harmonic

on every germ of complex curve in Er−1.

Proof. Note every boundary component contained in Er−1 is a boundary (r− 1)−component of DII
m

and it is always of one-dimensional when m is even. That is, every boundary component in Er−1 is

given by some h : DII
2 ≈ ∆→ ∂DII

m , where ∆ is the unit disk in C(See Lemma 3.3). But Theorem 6

implies u ◦ h is Bergman-harmonic on ∆. This is equivalent to harmonicity on ∆. We thus establish

Proposition 3.3. �

3.3. Boundary pluriharmonicity on type III domains. In this subsection, we prove Theorem

6 for type II domains and establish boundary pluriharmonicity for Bergman-harmonic functions on

type III domains D = DIII
m . Recall the following description on boundary components of DIII

m from

[PS].

Lemma 3.5. (Lemma 1, page 125, [PS])

(1) Let 1 ≤ k ≤ p and Xk be the set of points in ∂DI
p,q of form:(

Ik 0

0 W

)
, where W ∈ DIII

m−k. (3.12)

Then Xk is a boundary component of DIII
m . Clearly Xk ' DIII

m−k.

(2) Every boundary component X of DI
m can be transformed to Xk for some 1 ≤ k ≤ m by some

automorphism of DIII
m .

13



We will call such boundary component X in (2) a boundary k−component and call the boundary

component given by h1 : DIII
m−1 → ∂DIII

m a standard 1−component where

h1(W ) =

(
1 0

0 W

)
, where W ∈ DIII

m−1.

Note every boundary k−component lies in Ek.

Lemma 3.6. Let V be an open set in C
m(m+1)

2
III containing DIII

m and E1. Let u ∈ C2(V ) be Bergman-

harmonic. Then u ◦ h1 is Bergman-harmonic on DIII
m−1.

Proof. Write W = (wij)1≤i,j≤m−1 with wij = wji for the coordinates in C
m(m+1)

2
III . Recall by equation

(2.5), the Hua operator on DIII
m−1 is given by

∆̃3 =
1

4

m−1∑
s,t=1

Ṽst∆̃
st
3 ,

where Ṽst = δst −
∑m−1

r=1 wsrwtr, and ∆̃st
3 =

∑m−1
a,b=1

Ṽab

(1− δab
2

)(1− δtb
2

)

∂2

∂wsa∂wtb
. We will need to show

∆̃3(u ◦ h1) = 0 on DIII
m−1. Let ∆3 be the Hua operator on the type III domain DIII

m as in (2.5).

As in the proof of Lemma 3.2 and 3.4, we have ∆3u = 0 on E1 by the Bergman-harmonicity and

boundary regularity of u. Thus if we fix W0 ∈ DIII
m−1, and Z0 =

(
1 0

0 W0

)
∈ X1 ⊂ E1 ⊂ ∂DIII

m ,

then ∆3u = 0 at Z = Z0. Next we compute ∆3u at Z = Z0 by using (2.5). Recall Z = (zij)1≤i,j≤m.

Note

V11
∣∣
Z0

= 1− (

m∑
l=1

z1lz1l)
∣∣
Z0

= 1− 1 = 0.

V1k
∣∣
Z0

= −(
m∑
l=1

z1lzkl)
∣∣
Z0

= 0, if k > 1; Vj1
∣∣
Z0

= −(
m∑
l=1

zjlz1l)
∣∣
Z0

= 0, if j > 1.

When j > 1, k > 1,

Vjk
∣∣
Z0

= δjk − (

m∑
l=1

zjlzkl)
∣∣
Z0

= δ(j−1)(k−1) − (

m∑
l=2

w(j−1)(l−1)w(k−1)(l−1))
∣∣
W0

= Ṽ(j−1)(k−1)
∣∣
W0
.

Note also

∂2u

∂zjα∂zkβ

∣∣
Z0

=
∂2(u ◦ h1)

∂w(j−1)(α−1)∂w(k−1)(β−1)

∣∣
W0
, if j > 1, k > 1, α > 1, β > 1.
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Consequently,

∆jk
3 u
∣∣
Z0

=

m∑
α,β=1

Vαβ
∣∣
Z0

(1− δjα
2 )(1− δkβ

2 )

∂2u

∂zjα∂zkβ

∣∣
Z0

=

m∑
α,β=2

Vαβ
∣∣
Z0

(1− δjα
2 )(1− δkβ

2 )

∂2u

∂zjα∂zkβ

∣∣
Z0

=
m∑

α,β=2

Ṽ(α−1)(β−1)
∣∣
W0

(1− δ(j−1)(δ−1)

2 )(1− δ(k−1)(β−1)

2 )

∂2(u ◦ h1)
∂w(j−1)(α−1)∂w(k−1)(β−1)

∣∣
W0

= ∆̃
(j−1)(k−1)
3 (u ◦ h1)

∣∣
W0
.

(3.13)

Hence

∆3u
∣∣
Z0

=
1

4

m∑
j,k=1

Vjk
∣∣
Z0

(∆jk
3 u)

∣∣
Z0

=
1

4

m∑
j,k=2

Vjk
∣∣
Z0

(∆jk
3 u)

∣∣
Z0

=
1

4

m∑
j,k=2

Ṽ(j−1)(k−1)
∣∣
W0

∆̃
(j−1)(k−1)
3 (u ◦ h1)

∣∣
W0
.

(3.14)

This implies ∆̃3(u ◦ h1)
∣∣
W0

= 0. Since W0 is arbitrarily chosen in DIII
m−1, we conclude u ◦ h1 is

Bergman-harmonic in DIII
m−1. �

Proof of Theorem 6 in the type III case: It can be proved by the same argument as in the

type I case and by using Lemma 3.6.

We next prove the boundary pluriharmonicity for Bergman-harmonic functions on type III do-

mains.

Proposition 3.4. (1) If m ≥ 4 is even and u ∈ C
m
2 (DIII

m ) is Bergman-harmonic in DIII
m , then

u is pluriharmonic on every germ of complex manifold in ∂DIII
m .

(2) If m ≥ 3 is odd and if there exists α > 1
2 such that u ∈ C

m−1
2
,α(DIII

m ) is Bergman-harmonic

in DIII
m , then u is pluriharmonic on every germ of complex manifold in ∂DIII

m .

Proof. It suffices to prove that u is pluriharmonic on every boundary component of DIII
m . Fix 1 ≤

k ≤ m − 1. Assume h : DIII
m−k → ∂DII

m gives a boundary k−component. Theorem 6 yields u ◦ h is

Bergman-harmonic on DII
m−2k. By assumption, u ∈ Cγ(DII

m ), where γ = m
2 if m is even, and γ denotes

(m−12 , α) if m is odd. Consequently, since h extends holomorphically across the boundary of DIII
m−k

(This can be seen similarly as in Remark 3.3), we have u ◦ h extends γ−smoothly to a neighborhood

of DIII
m−k. We then apply Theorem 1.2 (ii), (iii) in [CL] to conclude u ◦ h is pluriharmonic in DIII

m−k.

Since k is arbitrarily chosen, we have proved that u is pluriharmonic on every boundary component,

and Proposition 3.4 follows. �

Again note every nontrivial complex variety in Em−1 ⊂ ∂DIII
m must be of one-dimensional.
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Proposition 3.5. Let m ≥ 2 and V an open set in C
m(m+1)

2
III containing DIII

m − Em. Assume u ∈
C2(V ) is Bergman-harmonic in DIII

m , then u must be harmonic on every germ of complex curve in

Em−1 ⊂ ∂DIII
m .

Proof. Copy the proof of Proposition 3.3. �

3.4. Boundary pluriharmonicity on type IV domains. We finally prove Theorem 6 for type

IV domains and establish boundary pluriharmonicity for Bergman-harmonic functions on type IV

domains. Since the book [PS] does not characterize the boundary components of type IV domains,

we first give the following description for their boundary components. Recall ∆ denotes the unit disk

in C.

Lemma 3.7. (1) Let X1 be the set of points in ∂DIV
m of the form:

(
ξ + 1

2
,
ξ − 1

2i
, 0, · · · , 0), ξ ∈ ∆, (3.15)

Then X1 gives a boundary component of DIV
m .

(2) Any nontrivial boundary component X of DIV
m can be transformed to X1 by some automor-

phism of DIV
m .

Remark 3.4. The component X in (3.15) can be regarded as a boundary 1−component. It lies

entirely in E1. Each point in E2 can be regarded as a boundary 2−component. In particular,

Lemma 3.7 says that all nontrivial boundary components must be one-dimensional.

Proof of Lemma 3.7: First one can verify the curve X1 is contained in the boundary of DIV
m .

Indeed, it entirely lies in E1. Moreover, φ(X1) lies entirely in E1 as well for every φ ∈ Aut(DIV
m ).

Next we prove the following fact.

Claim: Let g(t), |t| < ε, be a germ of nontrivial complex curve in ∂DIV
m . It must lie entirely in E1.

Assume h intersects with X1. Then g(t) is entirely contained in X1. Consequently, X1 is a boundary

component.

Proof of Claim: First note we must have g(t) ∈ E1 for all t. Indeed, suppose there is some

|t0| < ε such that g(t0) ∈ E2. Then ‖g(t0)‖ = 1 by (2.1). But we have ‖g(t)‖ ≤ 1 for all |t| < ε as h

lies in ∂DIV
m . By the maximum principle, ‖g(t)‖ = 1 for all t. This is a contradiction as the sphere

in Cm contains only trivial complex varieties. Hence |g(t)| < 1 for all t and the curve g lies entirely

in E1.

By reparametrizing g if necessary, we assume g and X1 intersect at Z0 = g(0) =

( ξ0+1
2 , ξ0−12i , 0, · · · , 0) for some ξ0 ∈ ∆. Note we can apply an automorphism ϕ of ∆ to make ϕ(ξ0) = 0.

Moreover, this automorphism ϕ of ∆ extends to an automorphism Φ of DIV
m that preserves X1. In-

deed, first this ϕ extends to an automorphism of a maximal polydisc embedded in DIV
m :

∆2 → DIV
m : (ξ, η)→ (

ξ + η

2
,
ξ − η

2i
, 0, · · · , 0).

And then note every automorphism of a maximal polydisc extends to an automorphism of DIV
m (cf.

[M]).
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By the above argument, we can assume Z0 = g(0) = (12 ,
i
2 , 0, · · · , 0) ∈ E1. Write g(t) =

(g1(t), · · · , gm(t)) and

g1 =
1

2
+ f1, g2 =

i

2
+ f2.

Thus f1(0) = f2(0) = 0, and gi(0) = 0 for i ≥ 3. Since g lies in E1 ⊂ ∂DIV
m , we have

1− 2 ‖g‖2 + |ggt|2 = 0, or 1− 2

(
|1
2

+ f1|2 + | i
2

+ f2|2 +
m∑
i=3

|gi|2
)

+ |ggt|2 = 0. (3.16)

Write G = ggt√
2

=
∑m
i=1 g

2
i√

2
. Note G(0) = 0. Moreover, (3.16) yields

−|G|2 + |f1|2 + |f2|2 +

m∑
i=3

|gi|2 + Re(f1 − if2) = 0 for |t| < ε.

Equating pure and mixed terms in z and z, we get

Re(f1 − if2) = 0; (3.17)

|G|2 = |f1|2 + |f2|2 +
m∑
i=3

|gi|2. (3.18)

By D’Angelo’s lemma [D], there is an m×m unitary matrix U such that

(f1, f2, g3, · · · , gm) = (G, 0, · · · , 0)U.

Writing the first row of U as u = (u1, · · · , um), we have

(f1, f2, g3, · · · , gm) = G(u1, · · · , um). (3.19)

We claim that G is not identically zero. Otherwise, by the above equation, f1, f2 and all g′is are

constant. This contradicts with the assumption that g is nontrivial.

Now (3.17) and (3.19) yield

Re ((u1 − iu2)G) = 0.

We apply open mapping theorem to G to obtain

u1 = iu2. (3.20)

On the other hand, we have

√
2G =

m∑
i=1

g2i = (
1

2
+ f1)

2 + (
i

2
+ f2)

2 + g23 + · · ·+ g2m.

Combining this with (3.19) and (3.20), we obtain
√

2G = 2u1G+ (u21 + · · ·+ u2m)G2.

Applying again open mapping theorem to G, we get

2u1 =
√

2, u21 + · · ·+ u2m = 0.
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Thus u1 =
√
2
2 and u2 = −i

√
2
2 . Consequently, as u is a unit vector, we have u3 = · · · = um = 0. We

thus conclude by (3.19) that

g = (
1

2
+

√
2

2
G,

i

2
− i
√

2

2
G, 0, · · · , 0).

We note |G| <
√
2
2 for all t. Indeed,

|G|2 =
|ggt|2

2
≤ ‖g‖

4

2
<

1

2
.

The last inequality comes from the fact that g lies in E1 ⊂ ∂DIV
m . Finally it follows that the complex

curve g lies entirely in X1. Since g is any arbitrary complex curve intersecting X1, we conclude X1

is a boundary component. This proves the claim.

Now let f be any germ of nontrivial complex curve in ∂DIV
m . By the claim above , it must

lies in E1. As Aut(DIV
m ) acts transitively on E1, there is some φ ∈ Aut(DIV

m ) such that φ−1(f)

intersects X1. It follows from the above claim that f lies entirely in φ(X1). Hence we conclude that

{φ(X1) : φ ∈ Aut(DIV
m )} are boundary components of DIV

m , and are the only nontrivial boundary

components. This proves Lemma 3.7.

In light of Proposition 3.7, we will call h1 : ∆ → ∂DIV
m the standard boundary 1−component

where h1 is given by (3.15).

Lemma 3.8. Let V be an open subset of Cm containing DIV
m − E2 and u ∈ C2(V ) be Bergman-

harmonic in DIV
m . Then u ◦ h1 is Bergman-harmonic (equivalently harmonic in this case) on ∆.

Proof. Let ∆4 be the Hua operator on the type IV domain DIV
m as in (2.7). As in the other type

cases, we have ∆4u = 0 in V by the Bergman-harmonicity and boundary regularity of u. Thus if

we fix ξ0 ∈ ∆ and write Z0 = h1(ξ0) = ( ξ0+1
2 , ξ0−12i , 0, · · · , 0), we have ∆4u = 0 at Z = Z0. We next

compute ∆4u in term of (2.7). Let s(Z), r(Z) be as in (2.6). Recall Z = (z1, · · · , zm). Note

s(Z0) = Z0Z
t
0 = (

ξ0 + 1

2
)2 + (

ξ0 − 1

2i
)2 = ξ0;

‖Z0‖2 = Z0Z
t
0 = |ξ0 + 1

2
|2 + |ξ0 − 1

2i
|2 =

1

2
(|ξ0|2 + 1).

Thus

r(Z0) = 1− 2 ‖Z0‖2 + |s(Z0)|2 = 0.

Consequently, by (2.7)

∆4u
∣∣
Z0

= 2
n∑

j,k=1

(zj−s(Z)zj)
∣∣
Z0

(zk−s(Z)zk)
∣∣
Z0

∂2u

∂zj∂zk

∣∣
Z0

= 2
2∑

j,k=1

(zj−s(Z)zj)
∣∣
Z0

(zk−s(Z)zk)
∣∣
Z0

∂2u

∂zj∂zk

∣∣
Z0
.

(3.21)

Writing

A1 = (z1 − s(Z)z1)
∣∣
Z0

=
1− |ξ0|2

2
, A2(Z) = (z2 − s(Z)z2)

∣∣
Z0

=
|ξ0|2 − 1

2i
,
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we have

∆4u
∣∣
Z0

= 2

(
|A1|2

∂2u

∂z1∂z1

∣∣
Z0

+A1A2
∂2u

∂z1∂z2

∣∣
Z0

+A1A2
∂2u

∂z2∂z1

∣∣
Z0

+ |A2|2
∂2u

∂z2∂z2

∣∣
Z0

)
=

(1− |ξ0|2)2

2

(
∂2u

∂z1∂z1

∣∣
Z0

+ i
∂2u

∂z1∂z2

∣∣
Z0
− i ∂2u

∂z2∂z1

∣∣
Z0

+
∂2u

∂z2∂z2

∣∣
Z0

)
= 0.

(3.22)

On the other hand, by the chain rule, we obtain,

∂2(u ◦ h1)
∂ξ∂ξ

∣∣
ξ0

=
1

4

(
∂2u

∂z1∂z1

∣∣
Z0

+ i
∂2u

∂z1∂z2

∣∣
Z0
− i ∂2u

∂z2∂z1

∣∣
Z0

+
∂2u

∂z2∂z2

)
. (3.23)

This is a multiple of ∆4u(Z0) by (3.22), and thus equals zero. Since ξ0 is arbitrarily chosen in ∆, we

conclude u ◦ h1 is harmonic in ∆. This establishes Lemma 3.8. �

Proof of Theorem 6 for the type IV case: Let h : ∆ → ∂DIV
m be some nontrivial boundary

component (i.e., boundary 1−component in this case). By Proposition 3.1, h = ψ ◦ h1 ◦ φ for some

φ ∈ Aut(∆) and ψ ∈ Aut(DIV
m ). By Lemma 3.8, u ◦ h1 is harmonic in ∆. It then follows from the

same argument as in the type I case that u ◦ h is Bergman-harmonic (i.e., harmonic) on ∆. This

proves Theorem 6 in the type IV case.

Theorem 6 immediately implies the following fact.

Proposition 3.6. Let m ≥ 2 and V an open subset of Cm containing DIV
m −E2. Assume u ∈ C2(V )

is Bergman-harmonic on DIV
m . Then u must be harmonic on every germ of complex curve in ∂DIV

m .

Inspired by Propositions 3.3, 3.5 and 3.6, an interesting and natural question asks whether Theorem

3 still holds if we only assume the boundary regularity u ∈ C l(V ) where V as in Theorem 6. Similar

questions can be asked for Proposition 3.2, 3.4.

Proof of Theorem 4: Theorem 4 follows from Propositions 3.3, 3.5, 3.6.

To end Section 3, we remark that it can be seen that, from the proof of Theorem 6 in each case,

the following stronger version holds.

Proposition 3.7. Let D ⊂ Cm be a classical domain and V an open subset of Cm containing the

set D ∪Ek, where Ek is kth boundary orbit of D. Assume u ∈ C2(V ) is Bergman-harmonic function

in D. Then u is Bergman-harmonic on every boundary component of D in Ek. That is, for every

h : D′ → D which gives a boundary component of D in Ek, it holds that u ◦ h is Bergman-harmonic

in D′.

4. A new characterization of pluriharmonicity

4.1. Preliminary. Let Ω be a domain in Cn and u a C2−smooth function in Ω. A simple and well-

known fact states that u is pluriharmonic if and only if h is harmonic on L ∩ Ω for every complex

affine line L. In this section, we establish a new characterization of pluriharmonicity by using the

special geometric structure of bounded symmetric domains, and will illustrate the aforementioned

fact is indeed the most special case of our result.
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To explain our result, we first recall the notion of minimal disks of bounded symmetric domains.

Recall a bounded symmetric domain is of rank one if and only if it is biholomorphic to the unit

ball. A bounded symmetric domain D of high rank has different sectional curvatures in general along

different complex directions. The minimal disks are a special class of complex geodesic curves whose

unit holomorphic tangent vectors realize the minimum of the holomorphic sectional curvature of D.

The minimal disks can be also interpreted in a more algebraic way. Let X be the compact dual of

D. Recall D can be canonically embedded into X as an open subset by the Borel embedding. Under

this embedding, a minimal disk of D extends to a minimal rational curve on X, which is defined as

a free rational curve of minimal degree among all free rational curves. In particular, when D is the

unit ball Bn, the intersection of every complex affine line with Bn is a minimal disk. Fix x ∈ D. The

holomorphic tangent vector at x of a minimal disk passing through x is called a minimal rational

tangent. The variety of minimal rational tangents, alias VMRT, at x of D(or of its compact dual X)

is defined by

CxD := {[η] ∈ PTxD : 0 6= η ∈ CTx∆x for some minimal disk ∆x passing through x}.

The VMRT CxD can be equipped with some natural structure to be a complex manifold. The

following table taken from [M] describes VMRTs for all types of compact Hermitian symmetric

spaces. The last column describes the embedding of CxD into PTxD.

Type G K X ≈ G/K CxD = CxX embedding

I SU(p+ q) S(U(p)× U(q)) G(p, q) Pp−1 × Pq−1 Segre

II SO(2n) U(n) GII(n, n) G(2, n− 2) Plücker

III Sp(n) U(n) GIII(n, n) Pn−1 Veronese

IV SO(n+ 2) SO(n)× SO(2) Qn Qn−2 by O(1)
V E6 Spin(10)× U(1) P2(O)⊗R C GII(5, 5) by O(1)
VI E7 E6 × U(1) exceptional P2(O)⊗R C Severi

The theory of VMRT was introduced by Hwang-Mok [HM] in the late 90’s. It plays a fundamental

role in studying the geometric theory of Hermitian symmetric spaces and more generally uniruled pro-

jective manifolds, as well as related topics, such as mapping problems between Hermitian symmetric

spaces.

The main result in this section is Theorem 5 mentioned in the introduction. This work draws

inspiration from two very interesting papers by Ng [Ng] and by Chen-Li [CL].

Theorem. (Theorem 5 in Section 1) Let D be an irreducible bounded symmetric domain and u ∈
C2(D) a real-valued function. Then u is pluriharmonic if and only if u is harmonic on every minimal

disk of D.
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Remark 4.1. When D is the unit ball Bn in Cn, the theorem is reduced to the simple fact that u is

pluriharmonic if and only if it is harmonic along every complex affine line.

The theorem fails if D is reducible, as can be seen from easy examples. For instance, let

u(z, w) = Re(zw) on the bidisk ∆2 ⊂ C2. Then u is harmonic on every minimal disk of ∆2, but

is not pluriharmonic in ∆2. However, we have the following modified version for reducible domains.

Theorem 7. Let D = D1 × · · · × Dm ⊂ CN1 × · · · × CNm be a bounded symmetric domain, where

D
′
js are irreducible factors. Assume for all choices of minimal disks ∆j ⊂ Dj , 1 ≤ j ≤ m, we have u

is pluriharmonic on ∆1 × · · · ×∆m. Then u is pluriharmonic in D.

4.2. Proofs of the characterization. We give proofs for Theorem 5 and 7 in this section. To

prove Theorem 5, we first establish the following results.

Let h be a C2−smooth function defined on some open subset of Cn. Writing z = (z1, · · · , zn) for

the coordinates of Cn, recall the complex Hessian of h is the n×n Hermitian matrix
(

∂2h
∂zi∂zj

)
1≤i,j≤n

.

Proposition 4.1. Let D ⊂ CN+1 be an irreducible bounded symmetric domain and u ∈ C2(D) a

real-valued function. Fix x ∈ D. Assume u is harmonic on every minimal disk passing through x.

Then the complex Hessian of u vanishes at x.

Proof. Let H(v, v) be a Hermitian form in v ∈ CN+1. Write the signature of H as (a, b, c), i.e. (the

Hermitan matrix corresponding to) H has a positive eigenvalues, b negative eigenvalues, and c zero

eigenvalues, where a+ b+ c = N + 1. Define the real hyperquadric in PN :

Q = {[v] ∈ PN : H(v, v) = 0}.

Then, inspired by [Ng], we have the following lemma:

Lemma 4.1. Let m = N −max{a, b}. Then the maximal compact complex analytic subvarieties in

Q are m−dimensional projective linear subspaces. Moreover, any germ of complex submanifold in Q
is contained in one of these projective linear subspaces.

Proof of Lemma 4.1: It basically follows from Lemma 2.4 in [Ng]. For the self-containedness,

we sketch the proof here. By the assumption on the signature of H, there exists U ∈ U(N + 1), such

that

H(vU, vU) = v diag(λ1, · · · , λa, µ1, · · · , µb, 0, · · · , 0) vt,

for some λi > 0, 1 ≤ i ≤ a and µj < 0, 1 ≤ j ≤ b. Thus by composing with a linear map v → vP for

some appropriate matrix P ∈ GL(N + 1,C), we can assume H takes the form:

H(v, v) = v diag(1, · · · , 1,−1, · · · ,−1, 0, · · · , 0) vt,

where the first a diagonal elements are 1, the next b diagonal elements are −1, and the rest are 0.

We first consider the case when a, b are both positive. Without loss of generality, as-

sume a ≥ b. Then m = b + c − 1. Write the homogeneous coordinates in PN as [z] =
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[z1, · · · , za, za+1, · · · , za+b, za+b+1, · · · , zN+1]. Then Q is defined by

a∑
i=1

|zi|2 =

b∑
j=1

|za+j |2.

Write Cm×n for the set of m×n matrices with elements in C and pick any A ∈ Cb×a with AA
t

= Ib,

where Ib is the b×b identity matrix. Then the following (b+c)−dimensional projective linear subspace

of PN lies in Q :

{[z] ∈ PN : [z1, · · · , za] = [za+1, · · · , za+b, za+b+1, · · · , zN+1]B}. (4.1)

Here the (b+ c)× a matrix B =

[
A

0c×a

]
and 0c×a denotes the c× a zero matrix.

On the other hand, given a germ of complex manifold g : V → Q, where V is a small open set in

some Cl. By shrinking V if necessary, we can assume g(V ) is contained in a Euclidean affine cell of PN ,
say U1 := {[z1, · · · , zN+1] : z1 6= 0}. Then in terms of inhomogeneus coordinates, g = (g2, · · · , gN+1)

satisfies the equation:

1 +
a∑
i=2

|gi|2 =
b∑

j=1

|ga+j |2.

By D’Angelo’s lemma [D], there exists A ∈M(b, a;C) with AA
t

= Ib such that

(1, g2, · · · , ga) = (ga+1, · · · , ga+b)A.

Thus such a germ of complex submanifold must be contained in one of the (b + c)−dimensional

projective linear subspace as described in (4.1). Hence those Pb+c are maximal complex subvarieties

in Q.
When a = 0 or b = 0, we have m = c − 1. It is clear that in this case any germ of complex

submanifold is contained in the following (c− 1)−dimensional projective linear subspace:

{[0, · · · , 0, za+b+1, · · · , zN+1] : [za+b+1, · · · , zN+1] ∈ Pc−1} ⊂ Q.

This finishes the proof of Lemma 4.1.

As a consequence of Lemma 4.1, we have the following result. Identify PTxD with PN in the

natural way.

Lemma 4.2. Assume H(v, v) = 0 for all [v] ∈ CxD ⊂ PN . Then the Hermitian form H(·, ·) is

identically zero in CN+1.

Proof of Lemma 4.2: Recall H(·, ·) has signature (a, b, c). It suffices to prove c = N + 1. By

assumption, CxD ⊂ Q ⊂ PN . It follows from Lemma 4.1 that Cx is contained in some m−dimensional

projective linear subspace of PN , where m = N −max{a, b}. We conclude from the following claim

that m = N, i.e., a = b = 0.

Claim: CxD is not contained in any lower dimensional projective linear subspace of PN .
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Proof of Claim: This fact is known to experts, and can be easily seen from the table in subsection

4.1. For instance, in the type I domain case DI
p,q = {Z : Cp×q : Ip − ZZ

t
> 0}, the VMRT CxDI

p,q is

the image of the Segre map Pp−1 × Pq−1 → Ppq−1. Recall the Segre map is given by

([z1, · · · , zp], [w1, · · · , wq])→ [ziwj ]1≤i≤p,1≤j≤q.

The claim can be seen from the linear independence of the quadratic monomials ziw
′
js. In the type

IV and V case, the embedding of VMRT CxD into PN is the minimal embedding given by O(1) .

Write SE6 ,SE7 for the Hermitian symmetric spaces of compact type that correspond to E6, E7. In

the type VI case in the table, we have the VMRT of SE7 satisfies CxSE7 ' SE6 and the embedding of

CxSE7 into PTxSE7 is indeed the minimal embedding SE6 → P26 (cf. [FHX] for the explicit formula

of this embedding). The claim for the remaining cases in the table can be verified similarly.

This establishes Lemma 4.2.

We now continue to prove Proposition 4.1. Write Hx(·, ·) for the Hermitian form associated to

the complex Hessian of u at x. Fix [v] ∈ CxD. Then there exists a minimal disk ∆x of D such that

v spans CTx∆x. By the assumption that u is harmonic on ∆x, we have Hx(v, v) = 0. Note [v] is

arbitrary in CxD. Then it follows from Lemma 4.2 that Hx(·, ·) is identically zero in CN+1. This

proves Propopsition 4.1.

�

Proof of Theorem 5: Theorem 5 is now a consequence of Proposition 4.1.

Remark 4.2. It is clear from Proposition 4.1 that the following stronger versions of Theorem 5

holds: Let U be an open subset of D. Let u ∈ C2(U) be a real-valued function and S a dense subset

of U. Assume for every x ∈ S and every minimal disk ∆x passing through x, u is harmonic on ∆x∩U.
Then u is pluriharmonic in U .

Next we give a proof of Theorem 7.

Proof of Theorem 7: Fix a point x = (x1, · · · , xm) ∈ D where xk ∈ Dk, 1 ≤ k ≤ m. Write

CxkDk ⊂ PTxkDk ' PNk−1. Write N = N1 + · · ·+Nm and the homogeneous coordinates in PN−1 as:

[Z] = [Z1, · · · , Zm]

where Zk denotes the coordinates of CNk , 1 ≤ k ≤ m. We write the defining function of CxkDk, which

is a projective variety in PNk−1, as

Pk(Zk) = 0 with [Zk] ∈ PNk−1

for some system of homogeneous polynomials Pk. Define a projective variety V of PTxD ' PN−1 by

V := {[Z] = [Z1, · · · , Zm] : Pk(Zk) = 0 for all 1 ≤ k ≤ m}.

Write Hx(·, ·) for the Hermitian form associated to the complex Hessian of u. By the assumption of

Theorem 7, we have

Hx(Z,Z) = 0 for all [Z] ∈ V.
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As before, write Q for the zero locus of Hx(·, ·) in PN−1 : Q = {[Z] ∈ PN−1 : Hx(Z,Z) = 0}. Then

V ⊂ Q. We will show that V is not contained in any lower dimensional projective linear subspace of

PN−1. Then it follows from Lemma 4.1 that Hx(·, ·) has signature (0, 0, N), i.e., Hx(·, ·) is identically

zero in CN .
We prove by contradiction. Suppose V is contained in some (N−2)−dimensional projective linear

subspace; call it L. Define for each 1 ≤ k ≤ m,

Lk := {[Z] ∈ PN−1 : Zl = 0 if l 6= k} ' PNK−1.

Then there exists some 1 ≤ k0 ≤ m such that L∩Lk0 6= Lk0(Otherwise L ' PN−1). But this implies

Cxk0Dk0 ' V ∩Lk0 is contained in a lower-dimensional projective linear subspace L∩Lk0 in PNk0−1.
This contradicts with the claim in the proof of Theorem 5.

We have thus proved Hx(·, ·) is identically zero in CN . Since x is arbitrary in D, we conclude H is

pluriharmonic in D.

4.3. Some applications. We expect Theorem 5 to be useful in the future study of Bergman-

harmonic functions on bounded symmetric domains (See the end of Section 5). There are also

some other possible applications. First Theorem 5 has the following geometric formulation.

Proposition 4.2. Let g1, g2 be two Kähler metrics on an irreducible bounded symmetric domain D.

Then g1 = g2 on D if and only if they have the same induced metric on every minimal disk.

Proof. The ”only if” part is trivial. To prove the converse direction, fix x ∈ D. First by the Kählerness

assumption, gi = ∂∂ρi, 1 ≤ i ≤ 2, for some C2−functions ρ1(Z,Z), ρ2(Z,Z) in some neighborhood U

of x in D. Let h : ∆ → D be any minimal disk in D that has a nonempty intersection with U . By

assumption, the two metrics g1, g2 induce the same metric on ∆. This implies

∂∂(ρ1 ◦ h) = ∂∂(ρ2 ◦ h) on ∆ ∩ U.

Here ρi ◦ h = ρi(h, h). As a consequence, ρ1 − ρ2 is harmonic on ∆ ∩ D for every minimal disk ∆.

Then Theorem 1 (Remark 4.2) yields that ρ1 − ρ2 is pluriharmonic in U. Hence g1 = g2 on U , and

thus on D by the arbitrary choice of x. �

Let (M1, ω1), (M2, ω2) be two Kähler manifolds and F : M1 →M2 be a holomorphic map. We say

F is isometric if F ∗(ω2) = ω1.

Corollary 4.1. Let (D,ωD) be an irreducible bounded symmetric domain equipped with the Bergman

metric ωD. Let (M,ω) be a Kähler manifold and F a holomorphic map from D to M . Then F is

isometric if and only if F maps each minimal disk isometrically into M .

Proof. We only need to prove the ”if” part. Note F ∗(ω) defines a Kähler metric on D. By assumption,

F maps all minimal disks isomerically to M . This implies that ωD and F ∗(ω) induce the same metric

on every minimal disk. By Proposition 4.2, F ∗(ω) = ωD. �
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5. A further remark on Bergman-harmonic functions on type I domains

In this section, we will prove a characterization result for Bergman-harmonic functions on type I

domains, using the ideas in Section 3. To explain our result, we first recall the definition of invariantly

geodesic subspace of a bounded symmetric domain (See [MT]). For our purpose, we will formulate it

for type I domains only. Let S ⊂ DI
p,q be a complex submanifold and regard DI

p,q as an open subset

of Gp,q, the Grassmannian of p−planes in Cp+q. Note the special group SL(p+ q,C), i.e., the set of

(p + q) × (p + q) matrices with determinant 1, acts naturally on Gp,q. We say S is an invariantly

geodesic subspace of DI
p,q if for every g ∈ SL(p+ q) with g(S)∩DI

p,q 6= ∅, the submanifold g(S)∩DI
p,q

is totally geodesic with respect to the Bergman metric of DI
p,q.

By the work of Mok-Tsai [MT], every invariantly geodesic subspace S of DI
p,q, up to the action of

automorphisms of DI
p,q, equivalent to a submanifold given by the image of the map h0 : DI

r,s → DI
p,q

for some 1 ≤ r ≤ p, 1 ≤ s ≤ q. Here

h0(Z) =

(
0 0

0 Z

)
, Z ∈ DI

r,s.

Such S is called an (invariantly geodesic) (r, s)−subspace.

In light of Mok-Tsai [MT], we make the following definition.

Definition 5.1. Let 1 ≤ r ≤ p, 1 ≤ s ≤ q.

(1) We say h : DI
r,s → DI

p,q gives a (r, s)−subspace if the image h(DI
r,s) is a (r, s)−subspace and

h is biholomorphism from DI
r,s to h(DI

r,s).

(2) Let u ∈ C2(DI
p,q). We say u is Bergman-harmonic on the (r, s)−subspace h(DI

r,s) if u ◦ h is

Bergman-harmonic in DI
r,s.

Remark 5.1. The notion in part (2) is independent of the choice of h. Indeed, suppose ĥ : DI
r,s →

DI
p,q gives the same (r, s)−subspace, i.e., ĥ(DI

r,s) = h(DI
r,s). Then we must have ĥ = h ◦ φ for

some φ ∈ Aut(DI
p,q). The biholomorphic invariance of Bergman-harmonic functions implies u ◦ ĥ is

Bergman-harmonic on DI
r,s if and only if u ◦ h is so.

Proposition 5.1. Let 1 ≤ p ≤ q. Fix 1 ≤ k ≤ p. Then u ∈ C2(DI
p,q)∩C(DI

p,q) is Bergman-harmonic

in DI
p,q if and only if u is Bergman-harmonic on every invariantly geodesic (k, q)−subspace.

Proof. We will first prove for the case k = 1. That is,

Lemma 5.1. Let u ∈ C2(DI
p,q) ∩ C(DI

p,q). Then u is Bergman-harmonic in DI
p,q if and only if u is

Bergman-harmonic on every (1, q)−subspace of DI
p,q.

Proof of Lemma 5.1: Assume u is Bergman-harmonic in DI
p,q and first prove the ”only if” part.

We start with the standard (1, q)−subspace, i.e., the subspace given by h1 : Bq → DI
p,q, where h1 is
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defined as

h1(ξ) =


ξ

0

· · ·
0

 , ξ = (ξ1, · · · , ξq) ∈ Bq.

Write ∆Bq for the Bergman-Laplacian of Bq and write Z = (zij)1≤i≤p,1≤j≤q for the coordinates in

Cp×q. We have

∆Bq(u ◦ h1) = (1− ‖ξ‖2)
q∑

α,β=1

(δαβ − ξαξβ)
∂2(u ◦ h1)
∂ξα∂ξβ

= (1− ‖ξ‖2)
q∑

α,β=1

(δαβ −
p∑
l=1

zlαzlβ)
∣∣
h1(ξ)

∂2u

∂z1α∂z1β

∣∣
h1(ξ)

= (1− ‖ξ‖2)∆11
1 u
∣∣
h1(ξ)

(5.1)

This is zero by [H] (See Theorem 2.2 (i) in [CL]). Thus u is Bergman-harmonic on the standard

(1, q)−subspace. Now assume h : Bq → DI
p,q give any (1, q)−subspace. Recall all (1, q)−subspaces of

DI
p,q are equivalent up to the action of automorphisms of DI

p,q by [MT]. This implies h = ψ ◦ h1 ◦ φ
for some φ ∈ Aut(Bq), ψ ∈ Aut(DI

p,q). We claim that u ◦ h is Bergman-harmonic on Bq. Indeed, note

u◦ψ is also Bergman-harmonic by the biholomorphic invariance of Bergman-harmonic functions. By

the above argument, u ◦ ψ ◦ h1 is Bergman-harmonic in Bq. Consequently, u ◦ h = u ◦ ψ ◦ h1 ◦ φ is

Bergman-harmonic on Bq as φ ∈ Aut(Bq). This proves the ”only if ”part.

We next prove the converse. Assume u is Bergman-harmonic on every (1, q)−subspace. Then so

is u ◦ ψ for every ψ ∈ Aut(DI
p,q). This is because ψ ◦ h also gives a (1, q)−subspace if h : Bq → DI

p,q

gives a (1, q)−subspace.

Set for each 1 ≤ i ≤ p, hi : Bq → DI
p,q to be

hi(ξ) =



0

· · ·
0

ξ

0

· · ·
0


,

where ξ is at the ith row. Clearly each hi gives a (1, q)−subspace of DI
p,q. By assumption, we have

∆Bq(u ◦ hi) = 0. Consequently,

(1− ‖ξ‖2)
∑

1≤α,β≤q
(δαβ − ξαξβ)

∂2(u ◦ hi)
∂ξα∂ξβ

= 0.
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Evaluate at ξ = 0 to get, ∑
1≤α≤q

∂2(u ◦ hi)
∂ξα∂ξα

∣∣
ξ=0

=

q∑
j=1

∂2u

∂zij∂zij

∣∣
Z=0

= 0.

Taking sum over 1 ≤ i ≤ p, we conclude that

∆u(0) =

p∑
i=1

q∑
j=1

∂2u

∂zij∂zij

∣∣
Z=0

= 0,

where ∆ is the standard Laplacian in Cp×q. Applying this conclusion to u ◦ ψ, we get

∆(u ◦ ψ)(0) = 0 for any ψ ∈ Aut(DI
p,q). (5.2)

Fix Z0 ∈ DI
p,q. There is ψ̃ ∈ Aut(DI

p,q) such that ψ̃(0) = Z0. By the biholomorphic invariance of

Bergman laplacian, we have ∆1(u ◦ ψ̃) = (∆1u) ◦ ψ̃. Since ∆1 and ∆ concide at origin, we have by

(5.2),

0 = ∆(u ◦ ψ̃)(0) = ∆1(u ◦ ψ̃)(0) = (∆1u) ◦ ψ̃(0) = ∆1u(Z0).

Since Z0 is arbitrary, we obtain ∆1u = 0 in DI
p,q and u is Bergman-harmonic on DI

p,q. This finishes

the proof of Lemma 5.1.

Fix 1 ≤ k ≤ p and a (k, q)−subspace D of DI
p,q. Note every (1, q)−subspace of D is also

a (1, q)−subspace of DI
p,q. Conversely, every (1, q)−subspace of DI

p,q is a (1, q)−subspace of some

(k, q)−subspace of DI
p,q. Thus Proposition 5.1 holds for every 1 ≤ k ≤ p. �

Remark 5.2. The analog of Proposition 5.1 may not hold for other types of classical domains, due

to the different structures of their invariantly gedesic subspaces.

At the end, we remark that the proof of Theorem 2 (i.e., Theorem 1.2 (i) in [CL]) has a geometric

formulation as follows: Let u be as in Theorem 2. By Proposition 5.1, u is Bergman-harmonic on

every (1, q)−space h : Bq → DI
p,q. By hypothesis, u ◦ h is Cq−smooth on Bq. By Graham’s Theorem

(Theorem 1), u is pluriharmonic in every (1, q)−space. But every minimal disk of DI
p,q is contained in

some (1, q)−space. Thus u is harmonic on every minimal disk and by Theorem 5, u is pluriharmonic

in DI
p,q. This proves Theorem 2.

Moreover, note the boundary of a (1, q)−subspace intersects only with the smooth part E1 of

∂DI
p,q. Thus the above proof indeed leads to the following statement. Let p ≤ q and q ≥ 2.

Let u ∈ C(DI
p,q)∩Cq(DI

p,q) be Bergman-harmonic in DI
p,q. Assume u extends Cq−smoothly across

every smooth boundary point. Then u is pluriharmonic in DI
p,q.

Using this statement and the proof of Theorem 3, we arrive at the following stronger version of

Theorem 3. Assume p ≤ q.
Fix 0 ≤ k ≤ p − 1 and let l := max{2, q − k}. Let u ∈ C(DI

p,q) ∩ C l(DI
p,q) be Bergman-harmonic

in DI
p,q. Assume u extends C l−smoothly across every point in E1 ∪ E2 · · · ∪ Ek+1. Then u is

pluriharmonic on every germ of complex submanifold in Ek.

An interesting question asks whether the assumption u ∈ C(DI
p,q) can be removed in the above

statements.
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